We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is a Bravais Lattice?

Andrew Kirmayer
By
Updated: May 21, 2024
Views: 6,332
Share

The term lattice generally refers to a cluster of points, which can be part of a mathematical drawing or a physical crystal, for example. A Bravais lattice, whether it is in two or three dimensions, typically fills a space without any gaps, while the points can be centered within the structure in four different ways. If the lattice points are placed only in the corners, it is called primitive centering. Body centered points are located in the middle of a lattice cell, while points can also be centered on the cell face, or side; sometimes there are points in the center of all faces of the lattice.

Each point is normally bordered by the same number of sides as another in a lattice; the distance and direction of each relative to one another is typically the same as well. The Bravais lattice, first studied by Auguste Bravais in the mid-1800s, can consist of an infinite number of points, which means there is no limit to how many can be included. It is often used in geometry as well as by researchers working with crystals, in which each point typically represents an atom.

A two-dimensional Bravais lattice is usually either square or rectangular in shape; the configuration is generally determined by the lengths of the lines. The lines are often at 90° angles to one another, but if they are at a 120° angle, a hexagonal lattice can be formed. If all of the sides are at right angles, then lines can be drawn to show the symmetry of a shape formed by the Bravais lattice.

Shapes can have a two-fold rotation axis if they include a symmetrical dividing line and are turned 180°. Squares, for example, can be turned 90° and folded, which means they have a four-fold axis, while the hexagonal lattice, with a three-fold symmetry, can be rotated in 120° steps centered on each lattice point. A three-dimensional Bravais lattice generally features the same rules concerning symmetry. Points can be attributed to the corners only, the cell center, the middle of each face, or the center of the faces.

A cubic Bravais lattice is one of seven different forms, which are typically defined by the presence of one or several alternate patterns of points. The forms include the tetragonal Bravais lattice as well as the orthorhombic, hexagonal, trigonal, monoclinic, or triclinic types. In addition to their graphical and mathematical representations, each of these is often attributed to the crystalline structure of specific substances found in nature.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Andrew Kirmayer
By Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various industries and disciplines. With a degree in Creative Writing, he is skilled at writing compelling articles, blogs, press releases, website content, web copy, and more, all with the goal of making the web a more informative and engaging place for all audiences.
Discussion Comments
Andrew Kirmayer
Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various...
Learn more
Share
https://www.allthescience.org/what-is-a-bravais-lattice.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.