We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Mechanical Wave?

By D.R. Satori
Updated: May 21, 2024
Views: 27,401
Share

A mechanical wave is a disturbance that pulsates through some form of medium: a solid, a liquid, or a gas, carrying the original, initiating energy from one place to another. There are three types of mechanical waves: transverse, longitudinal, and boundary. Simple examples of waves and the media through which they move are sound in air, seismic waves in rock, and the vibrations of a guitar string.

One example of mechanical waves are ripples in a pond that move outward from where a stone is dropped. The wave moves through the medium even though the atoms and molecules of the medium itself generally return to their original position after they have been squeezed together, stretched apart or rotated by the wave passing through them. The mechanical wave may move in straight-line motion, rotational motion, or a combination of the two.

Waves possess the characteristics of frequency, period, wavelength, and amplitude. The distance between one wave pulse and the next is its wavelength and the time between pulses is the period. For a transverse waves, the amplitude is the distance that the wave displaces the medium. The number of waves passing through the medium over time is the wave’s frequency. The higher the frequency of a mechanical wave, the greater the energy it transmits.

Transverse waves transmit their energy in an up and down or a side-to-side fashion, forcing the medium to take the form of a crest and trough — as in a sine wave. A good example of this kind of wave is a seismic S-wave in which the Earth’s crust moves up and down, or side to side, perpendicular to the direction of wave propagation. The mechanical wave model of a transverse wave is given by the wave equation, an energy equation, the solution of which is a sine wave possessing the aforementioned characteristics of frequency, period, wavelength, and amplitude.

Longitudinal waves are density waves that move through the expansion and compression of particles of the medium. One expansion and compression is one wavelength. Good examples of these waves are sound waves in air and seismic P-waves in the ground. The greater the density of the material, the faster the waves move through it.

Boundary waves are mechanical waves that resonate between two dissimilar media. Air cavities and constrained strings in musical instruments, the vibration of a tuning fork, and the crown-like shape of a water droplet splash are good examples of boundary mechanical waves. The resonant sound of the tuning fork is limited by the shape and size of its boundary and the elasticity of the material composing it.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Markerrag — On Jan 30, 2015

@Terrificli -- What is actually incredible is that the people who originally designed stringed instruments probably knew very little about mechanical waves and how they worked.

Think about desiging instruments pretty much by hit or miss. Sounds rought. Understanding the science behind those things would have made life a lot easier for those early instrument makers, I reckon.

By Terrificli — On Jan 29, 2015

It is incredible to me that so few people realize that mechanical waves are what make guitars, basses and all stringed instruments possible. You don't need to know the science behind mechanical waves to play guitar, but understanding that science can help if you are having a problem with intonation (i.e. your guitar won't stay in tune) or other problems caused by the fact that the normal mechanical wave is somehow interfered with or blocked in some way.

Share
https://www.allthescience.org/what-is-a-mechanical-wave.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.