We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is an Electric Field?

By Phil Riddel
Updated: May 21, 2024
Views: 16,925
References
Share

An electric field can be regarded as the sphere of influence of an electrically charged object. Anything that has an electrical charge will affect, and be affected by, other charged bodies. If two charged objects are placed sufficiently close to one another, each will experience a measureable force acting upon it. The field is theoretically infinite in extent, but its magnitude diminishes with distance from the source according to the inverse square law. This means that if the distance is doubled, the strength of the field is divided by four, and at three times the distance, the strength is divided by nine, and so on; the field therefore becomes negligible at large distances.

Since an electric charge can be positive or negative, the electric field is a vector field, which means that it has a direction as well as a magnitude. Two electrically charged objects will experience a repulsive force if they have the same type of charge and an attractive force if they have different types of charge. The force experienced by a charged object in an electric field can be calculated as F = Eq, where F is the force in Newtons, E is the electric field in volts per meter (v/m) and q is the charge in Coulombs. This equation can be rearranged to give the strength of the field, E, in volts per meter: E = F/q. These examples apply to small, point-like, objects; for more complex, or multiple, charged bodies, the calculations are more complicated.

The direction of an electric field is defined as the direction in which the electric force would be felt by an object with a positive charge placed in the field. Thus, the field would point away from a positive charge and toward a negative charge, since like charges repel and unlike charges attract. In the case of two bodies with the same type of charge, each would experience a force — calculable by the F = Eq equation — directed away from the other object. Conversely, for two oppositely charged bodies, each would experience a force directed toward the other object.

An electric field line can be drawn with an arrow pointing away from a positive charge and pointing toward a negative charge. Thus, a positively charged object would be depicted with field lines pointing away from it in all directions, and a negatively charged object with field lines converging upon it. This, however, is just a convention and does not indicate that there is anything physical pointing in a particular direction.

The concept of an electric field as described above is part of “classical” physics. The classical description works well for everyday applications, but does not explain what is actually happening when charged objects attract or repel one another. A branch of quantum theory known as quantum electrodynamics (QED), attempts to do this in terms of the exchange of photons, the carriers of the electromagnetic force.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Discussion Comments
Share
https://www.allthescience.org/what-is-an-electric-field.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.