G-force refers to either the force of gravity on a particular celestial body or the force of acceleration anywhere. It is measured in g's, where 1 g equals the force of gravity at the Earth's surface (9.8 meters per second per second). As Einstein realized, the force of gravity and the forces of acceleration are mutually indistinguishable on the subject; a person in an opaque box experiencing a g-force would be unable to tell whether its origin lies in acceleration through space or a gravitational field, unless he had some way of seeing outside the box. The analysis of this force is important in a variety of scientific and engineering fields, especially planetary science, astrophysics, rocket science, and the engineering of various machines such as fighter jets, race cars, and large engines.
Humans can tolerate localized g-forces in the 100s of g's for a split second, such as a slap to the face. Sustained forces above about 10 g can be deadly or lead to permanent injury, however, although there is considerable variation among individuals when it comes to their tolerance. Race car drivers have survived instantaneous accelerations of up to 214 g during accidents. In rocket sled experiments designed to test the effects of high acceleration on the human body, Colonel John Stapp in 1954 experienced 46.2 g for several seconds. Usually, accelerations beyond 100 g, even if momentary, are fatal.
In everyday life, humans experience g-forces stronger than 1 g. A typical cough produces a momentary force of 3.5 g, while a sneeze results in about 3 g of acceleration. Roller coasters are usually designed not to exceed 3 g, although a few notable exceptions produce as much as 6.7 g. Slight increases are experienced in any moving machinery, such as cars, trains, planes, and elevators. Astronauts in orbit experience 0 g, called weightlessness.
G-force varies on different planets or celestial bodies. When an object has a greater mass, it produces a higher gravitational field, resulting in higher g-forces. On the Moon, it's about 1/6 g, and on Mars, about 1/3 g. On the Martian satellite Deimos, only 8 miles (13 km) in diameter, the gravity is about 4/10,000ths of a g. In contrast, the surface of Jupiter experiences about 2.5 g. This is smaller than it seems it should be because Jupiter's low density causes its surface to be very far from its primary concentration of mass at the core. On the surface of a neutron star, a degenerate star with a density similar to the atomic nucleus, the surface gravity is between 2×1011 and 3×1012 g's.