We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Engineering

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Random Vibration?

By James Doehring
Updated: May 21, 2024
Views: 11,440
Share

Random vibration is any vibration that does not follow a pattern. It is present to some extent in a wide variety of mechanical and electrical systems. Though random vibration cannot be predicted exactly, statistics can generate useful information for vibration environments. Cars on the highway and rockets launching are two situations that can face intense random vibration. Engineers use statistical data to simulate this vibration in the laboratory.

Certain probabilities of random vibration behavior often can be predicted. For example, if a car on the highway is randomly vibrating in the vertical direction, its future positions above the ground cannot be known exactly. The probability that the car will be above a certain height, however, can be predicted. This is possible because random behavior follows a normal distribution or “bell curve.” The behavior of such a system can be analyzed with the tools of statistics.

Statistical analysis can give information like the average value of many measurements. In the car example, the average height off the ground may be something like 1 foot (30.5 cm). In a sufficiently large sample of measurements, statistics can also give standard deviations. One standard deviation is the distance from the mean value that contains 68.2% of all data points. For the car vibration test, 68.2% of height measurements may be within 1 inch (2.54 cm) of the mean height.

When the standard deviation of test data has been calculated, engineers can use this to design products. The random vibration conditions on many different highways are similar, so the statistical data is fairly reliable. Engineers use this data to replicate vibration conditions in a laboratory, where it is easier to run tests on different product designs.

Another situation that experiences random vibration is a rocket launch. Rocket payloads feel an initial spike in vibration when the engine ignites. A few seconds later, vibrations are primarily from the motor burning. After the rocket surpasses the speed of sound, vibration is mainly from shock waves and aerodynamic effects on the vehicle. Later, some vibration can result from smaller thrusters that correct the rocket’s orientation.

Like with the car, rockets and their payloads must be designed to survive random vibration. Engineers need to know the statistical data of the vibration so they can reproduce these conditions in the laboratory. It would be impractical to launch a test rocket every time a new payload design needed to be tested. Rather, engineers put sensors on the rockets that are launched, and then use this data later.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By Mammmood — On Sep 12, 2011

@hamje32 - While cars and rockets are mentioned in the article, I would assume that these principles apply to airplanes as well.

There is nothing like flying in an airplane through a path of disturbances that shake the plane and make the wings rattle. You wonder in those moments if the plane can really withstand all of the random vibrations that it must endure.

I realize that they use wind tunnels to anticipate the effect of these vibrations but still, now and then you experience that jolt that makes it feel like the airplane is about to fall apart. Perhaps I am just too afraid of flying.

By hamje32 — On Sep 12, 2011

@allenJo - I think they would still follow the bell curve pattern. The key to accurate vibration analysis I believe is to have a large statistical sample to do your measurements.

So in the example that you cite, you would need to run a lot of tests with the off road SUV vehicle. This would give you a baseline for measurements and a decent statistical sample, and I believe the results will still follow the bell shape pattern.

You can’t compare the off road SUV with the car driven on the highway in my opinion; it’s apples and oranges.

By allenJo — On Sep 11, 2011

The article talks about random vibration testing for a car on the highway. What about a car that is traveling in conditions that are more or less random?

For example, just consider an off road SUV traveling in dirt roads; these conditions would cause a lot of random vibrations which would not mimic the spikes that you might see in a highway driven vehicle.

Would the statistical patterns be the same?

Share
https://www.allthescience.org/what-is-random-vibration.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.