We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is the Standard Model?

Michael Anissimov
By
Updated: May 21, 2024
Views: 19,388
Share

The Standard Model of particle physics is physics' best approximation to a complete theory of reality. It describes dozens of particles and the interactions between them, which fall into three categories; the strong nuclear force, the weak nuclear force, and electromagnetism. The particles fit into two classes: bosons or ferimons.

Fermions include the familiar proton and neutron (both of which are composed of quarks, neutrinos, and gluons), and the electron, which is fundamental.

Bosons mediate interactions between fermions.

The main difference between bosons and fermions is that bosons can share the same quantum state, whereas fermions cannot. The Standard Model is routinely used to predict the outcomes of interactions between particles to many significant figures of accuracy. It is not entirely complete, but is the best theory around since its inception between 1970 and 1973.

Fermions consist of 6 quark varieties and 6 lepton varieties. Nearly all matter we observe around us consists of 2 quark types, the "up" quark and the "down" quark, and 1 lepton variety, the electron. These three particles are sufficient to make up all the atoms in the Periodic Table, and the molecules they create when bonded to one another. The remaining 4 quarks and 5 leptons are more massive versions which otherwise behave the same as their less massive cousins. They can be created in high-energy physics experiments for split-second periods. Every lepton has a neutrino (energy-carrying particle of extremely low mass and high velocity) that corresponds to it. All of these particles also have antimatter versions, which behave in the same way, but annihilate upon contact with non-antimatter, converting the mass of both particles into pure energy.

Bosons come in 4 varieties, which mediate the three fundamental forces mentioned earlier. The most familiar boson is the photon, which mediates electromagnetism. This is responsible for all the phenomena surrounding electricity, magnetism, and light. Other bosons include the W and Z bosons, which mediate the weak nuclear force; and gluons, which mediate the strong nuclear force that binds quarks together into larger particles such as neutrons and protons. In this way The Standard Model explains or unites 3 of the 4 fundamental forces in nature; the outstanding force being gravity.

The Higgs boson is a boson whose existence is predicted by the Standard Model but has not yet been observed. It would be responsible for the mechanism by which all the particles acquire mass. Another hypothetical boson is the graviton, which would mediate gravitational interactions.

Gravity is not included in the Standard Model because we lack a theoretical description or experimental clues of the bosons which mediate gravitational interactions. However, modern string theory has introduced intriguing possibilities for further exploration into possible ways to expose the hypothetical graviton. If one day successful, it may turn out to replace The Standard Model by uniting all 4 fundamental forces, hence becoming the elusive "Theory of Everything."

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
Share
https://www.allthescience.org/what-is-the-standard-model.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.